286

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

REFERENCES

Achkar, N. P., Cambiagno, D. A., & Manavella, P. A., (2016). miRNA biogenesis: A dynamic

pathway. Trends in Plant Science, 21(12), 1034–1044. https://doi.org/10.1038/nrm2632.

Adai, A., Johnson, C., Mlotshwa, S., Archer-Evans, S., Manocha, V., Vance, V., & Sundaresan,

V., (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome

Research, 15(1), 78–91. http://dx.doi.org/10.1101/gr.2908205.

Agarwal, P. K., Shukla, P. S., Gupta, K., & Jha, B., (2013). Bioengineering for salinity

tolerance in plants: State of the art. Molecular Biotechnology, 54(1), 102–123. https://doi.

org/10.1007/s12033-012-9538-3.

Agrawal, N., Dasaradhi, P., Mohmmed, A., Malhotra, P., Bhatnagar, R. K., &

Mukherjee, S. K., (2003). RNA interference: Biology, mechanism, and applications.

Microbiology and Molecular Biology Reviews, 67(4), 657–685. https://org/doi/10.1128/

MMBR.67.4.657-685.2003.

Akdogan, G., Tufekci, E. D., Uranbey, S., & Unver, T., (2016). miRNA-based drought

regulation in wheat. Functional & Integrative Genomics, 16(3), 221–233. https://doi.

org/10.1007/s10142-015-0452-1.

Ali, N., Datta, S. K., & Datta, K., (2010). RNA interference in designing transgenic crops. GM

Crops, 1(4), 207–213. http://dx.doi.org/10.4161/gmcr.1.4.13344.

Allen, E., Xie, Z., Gustafson, A. M., Sung, G. H., Spatafora, J. W., & Carrington, J. C.,

(2004). Evolution of microRNA genes by inverted duplication of target gene sequences

in Arabidopsis thaliana. Nature Genetics, 36(12), 1282–1290. https://doi.org/10.1038/

ng1478.

Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X., Dreyfuss, G.,

et al., (2003). A uniform system for microRNA annotation. RNA, 9(3), 277–279. https://doi.

org/10.1261/rna.2183803.

Amor, B. B., Wirth, S., Merchan, F., Laporte, P., D’aubenton-Carafa, Y., Hirsch, J., Maizel, A.,

et al., (2009). Novel long non-protein coding RNAs involved in Arabidopsis differentiation

and stress responses. Genome Research, 19(1), 57–69. https://doi.org/10.1101/

gr.080275.108.

Aravin, A. A., Hannon, G. J., & Brennecke, J., (2007). The Piwi-piRNA pathway provides

an adaptive defense in the transposon arms race. Science, 318(5851), 761–764. https://doi.

org/10.1126/science.1146484.

Archak, S., & Nagaraju, J., (2007). Computational prediction of rice (Oryza sativa) miRNA

targets. Genomics, Proteomics & Bioinformatics, 5(3, 4), 196–206. https://doi.org/10.1016/

s1672-0229(08)60007-8.

Arenas-Huertero, C., Perez, B., Rabanal, F., Blanco-Melo, D., De La Rosa, C., Estrada-

Navarrete, G., Sanchez, F., et al., (2009). Conserved and novel miRNAs in the legume

Phaseolus vulgaris in response to stress. Plant Molecular Biology, 70(4), 385–401. https://

doi.org/10.1007/s11103-009-9480-3.

Aukerman, M. J., & Sakai, H., (2003). Regulation of flowering time and floral organ identity

by a microRNA and its APETALA2-like target genes. The Plant Cell, 15(11), 2730–2741.

https://doi.org/10.1105/tpc.016238.

Axtell, M. J., (2013). Classification and comparison of small RNAs from plants. Annual Review

of Plant Biology, 64, 137–159. https://doi.org/10.1146/annurev-arplant-050312-120043.

Axtell, M. J., Snyder, J. A., & Bartel, D. P., (2007). Common functions for diverse small RNAs

of land plants. The Plant Cell, 19(6), 1750–1769. https://doi.org/10.1105/tpc.107.051706.